

目录

Abstract .. 2
1. Introduction ...3

1.1. Introduction to Traffic Tokenization ..3
1.2. Current Status and Future Expectations of the Traffic Monetization Market3
1.3. Current Issues in the Traffic Monetization Market ... 3

1.3.1. Market Dominance by Large Companies (Monopoly). 3
1.3.2. Traffic Fraud and Fake Traffic ..4
1.3.3. Lack of Transparency & Unfair Settlements ... 4
1.3.4. Privacy Issues & Misuse of User Data ... 4
1.3.5. Undervaluation of Traffic ...4

1.4. What is Traffic Tokenization? ... 4
1.5. SwiftBlock Coin Blockchain and Technical Architecture .. 5

1.5.1. Key Features of SCP ... 5
1.5.2. SCP Consensus Process ...5
1.5.3. Main Components of SCP ...6
1.5.5. Federated Byzantine Agreement (FBA) Model .. 7

1.6. Core Advantages of SwiftBlock Coin ..18
1.6.1. SCP Advantages ... 18
1.6.2. SCP Mechanism Advantages ..18
1.6.3. SwiftBlock Coin Ecosystem Advantages ... 19
1.6.4. Use Cases .. 19
1.6.5. Asset Security ..19
1.6.6. SFB Reward Mechanism .. 20
1.6.7. SwiftBlock Coin Distribution ...20
Internal Network Phase ... 21
Mainnet Phase .. 21
Liquidity and Market Operations ... 22
Research Team .. 22
Technical Team ..22
Incentive Mechanisms ... 23
Burning Mechanism ... 23
Total Supply ...24
1.6.8. Future Development ..25
1.6.9. Conclusion ...25

Abstract

SwiftBlock Coin is a revolutionary cryptocurrency focused on traffic tokenization. Through
decentralized traffic tokenization, SwiftBlock Coin provides a transparent, secure, and efficient
transaction method. Built on the SwiftBlock Consensus Protocol (SCP), SwiftBlock Coin adopts
a Decentralized Autonomous Organization (DAO) framework, ensuring fair governance and

community-driven development. A unique referral reward mechanism promotes user growth,
incentivizes reward distribution, and enhances ecosystem activity.

1. Introduction

1.1. Introduction to Traffic Tokenization

SwiftBlock Coin is a revolutionary cryptocurrency focused on traffic tokenization, breaking
away from traditional traffic monetization methods. By integrating traffic tokenization with
blockchain technology, it creates new channels for traffic monetization.

1.2. Current Status and Future Expectations of the Traffic Monetization Market

According to the latest market research data, the global advertising industry's market value
surpassed the $1 trillion mark for the first time in 2024. Digital advertising dominates this
space, expected to account for 73% of global advertising expenditures by 2025. In the Chinese
market, the digital advertising market reached billion RMB in 2024 and is projected to grow at
a compound annual growth rate (CAGR) of over 15% by 2029.

1.2.1. Currently, the global internet traffic monetization market primarily generates
revenue through advertising, membership subscriptions, and data transactions.
Due to its broad scope and involvement across multiple industries, it is
challenging to accurately estimate its total market value.

1.2.1.1. China's Influencer Economy Market: According to Xinhua News,
China's influencer economy market reached RMB 1.3 trillion in 2022, a
year-on-year increase of 26.9%. It is expected to exceed RMB 1.6 trillion in
2023, with a year-on-year growth of 23.8%.

1.2.1.2. China's Short Video and Live Streaming Market: According to the
"2023 National Radio and Television Industry Statistical Bulletin," the
revenue from short videos, live streaming, and other online
audiovisual-related businesses in China exceeded RMB 420 billion in 2022,
a year-on-year increase of 33.39%.

1.2.2. Looking ahead, with the development of blockchain, artificial intelligence, and
Web3.0 technologies, the traffic monetization market is expected to witness new
growth opportunities. Decentralized traffic trading, enhanced privacy protection,
and the application of smart contracts will further expand the market size.

1.3. Current Issues in the Traffic Monetization Market
1.3.1. Market Dominance by Large Companies (Monopoly) – Internet traffic

monetization is primarily controlled by tech giants such as Google, Meta

(Facebook), Alibaba, and Tencent, leading to a highly centralized monopoly.

Currently, most content creators rely on these large companies or social media
platforms for traffic monetization, but several issues persist, such as:

 Platform Monopoly and High Commission Rates: A significant amount of
data and users are concentrated on well-known platforms, forcing many
creators to use these platforms, which charge high commission fees due to their
popularity.

 High Monetization Threshold & Intense Competition: Individual creators and
small websites struggle to earn substantial income from traffic monetization, as
only high-traffic creators receive significant payouts.

 Fierce Competition for Traffic on Emerging Platforms: Advertisers prefer to
invest in top-tier traffic, making it difficult for smaller creators to secure
partnerships.

 Long Settlement Cycles: For example, Google Ad-Sense requires a payment
cycle of over 30 days, affecting the cash flow of small traffic owners.

1.3.2. Traffic Fraud and Fake Traffic
 Bot Traffic: Advertisers pay for traffic, but it may actually come from bots or

scripts, leading to low conversion rates for ad campaigns.
 Click Fraud: Malicious competitors or cheaters use automated programs to click

on ads, causing significant losses for advertisers.

1.3.3. Lack of Transparency & Unfair Settlements
 Advertisers cannot track the true source of traffic and rely on platform-provided

data, which may be falsified or misleading.

1.3.4. Privacy Issues & Misuse of User Data
 Centralized platforms collect vast amounts of user data and use AI algorithms

for targeted advertising, severely infringing on user privacy.
 Users have no control over their data, and personal information is sold to

third-party advertising companies.

1.3.5. Undervaluation of Traffic
 The current traffic market is primarily based on CPC (Cost Per Click) and CPM

(Cost Per Thousand Impressions), but it fails to effectively measure the true
contribution of users.

 User behavior data (such as dwell time and interaction rates) is not effectively
monetized, preventing traffic providers from earning fair compensation.

1.4. What is Traffic Tokenization?
 The core of traffic tokenization is transforming traffic into freely tradable tokens

on the blockchain. Each token represents the traffic property rights of the traffic

provider. Blockchain technology enables this traffic to become a digital asset,
allowing for secure, transparent, and seamless global trading.

 Traffic tokenization breaks away from traditional traffic monetization methods,
providing better liquidity for content creators and traffic providers. Compared to
traditional methods, it significantly lowers the monetization threshold,
addressing the issue of unfair earnings for small creators and ordinary
individuals, enabling more people to participate.

1.5. SwiftBlock Coin Blockchain and Technical Architecture

The SwiftBlock Network is an open-source public blockchain powered by the
SwiftBlock Consensus Protocol (SCP), a Proof-of-Agreement (PoA) consensus mechanism.
Driven by the SCP, the SwiftBlock Coin network is faster, cheaper, and more
energy-efficient than many other blockchains. Transactions are finalized and added to the
blockchain once computers, known as "nodes," reach consensus through the SwiftBlock
Consensus Protocol. Anyone can set up a SwiftBlock node and participate, but they must
provide their identity information in the public record. This allows other nodes to decide
whom to include or exclude from their trusted groups. The SCP achieves consensus
through a series of voting processes among these mutually trusted nodes. When a
sufficient number of nodes in the trusted overlapping group (known as a quorum) agree
that a set of transactions and their associated assets and operations are valid, they are
permanently added to the blockchain. This process typically takes around 5 seconds.

1.5.1. Key Features of SCP

SCP is the first provably secure consensus mechanism with four key attributes:
 Decentralized Control: Anyone can participate, and there is no central authority

to determine whose approval is needed to reach consensus.
 Low Latency: Nodes can reach consensus within the time frame expected for

web or payment transactions, typically within a few seconds.
 Flexible Trust: Users are free to trust any combination of parties they deem

appropriate. For example, a small non-profit organization could play a crucial
role in keeping large institutions honest.

 Asymptotic Security: Security relies on digital signatures and hash families,
whose parameters can be practically adjusted to protect against adversaries with
unimaginably vast computational power.

1.5.2. SCP Consensus Process
The SCP consensus process is divided into four stages, each ensuring data security
and finality:
 Proposal: Nodes propose transaction candidates to the network, and all nodes

exchange information.
 Voting: Voting is conducted through quorum slices to determine the consensus

group.
 Confirmation: Once a transaction receives sufficient support, it enters the

confirmation state, preventing forks.
 Application: The transaction is written to the ledger, finalized, and becomes

immutable.

1.5.3. Main Components of SCP
 Nodes: Servers running the SCP protocol, responsible for transaction validation

and consensus.
 Federated Byzantine Agreement (FBA): Consensus is achieved through

quorum slices without requiring full network synchronization.
 Quorum Slices: Each node independently selects other nodes it trusts, forming

a partial trust network.
 Ledger: Records all transaction history, similar to a blockchain but with faster

updates.
 SwiftBlock Core: The main engine that processes the SCP protocol and

maintains the blockchain.
 Horizon API: A REST API for developers to access the SwiftBlock Network,

supporting functions such as transaction queries and account management.

1.5.4. Characteristics of Different Consensus Mechanisms

There are differences between SwiftBlock Consensus Protocol (SCP) and other
consensus mechanisms.The most well-known decentralized consensus mechanism is
the Proof of Work (PoW) scheme proposed by Bitcoin. Bitcoin employs a
dual-pronged approach to achieve consensus. First, it provides incentives for rational
actors to behave well. Second, it settles transactions through the Proof of Work
algorithm, which is designed to prevent misbehaving actors who do not possess the
majority of the system's computational power.

Bitcoin has fully demonstrated the appeal of decentralized consensus. However,
Proof of Work also has its limitations. First, it is resource-intensive—Bitcoin may
consume as much electricity as the entire country of Ireland. Second, the expected
delay for secure transaction settlement is on the order of minutes or tens of minutes.

Finally, compared to traditional cryptographic protocols, Proof of Work does
not provide asymptotic security. When considering irrational attackers or those with
external motives to disrupt, even a slight computational advantage can invalidate
security assumptions, allowing history to be rewritten in what is known as a "51%
attack." Worse, an attacker initially controlling less than 50% of the computational
power could manipulate the system by offering disproportionate rewards to those
who join them.

An alternative to Proof of Work is Proof of Stake (PoS), where consensus
depends on parties who have provided collateral. Like Proof of Work, rewards
encourage rational participants to comply with the protocol, while the design also
penalizes bad behavior. Proof of Stake opens up the possibility of so-called
"nothing-at-stake" attacks, where parties who previously provided collateral but later
cashed it out and spent it can return to a point where they still held the collateral and
rewrite history. To mitigate such attacks, systems effectively combine Proof of Stake
with Proof of Work—either scaling the required work proportionally to the collateral
or delaying the return of collateral long enough for other consensus mechanisms to
establish irreversible checkpoints.

Another method for achieving consensus is Byzantine Agreement, with the most
famous variant being PBFT (Practical Byzantine Fault Tolerance). Byzantine
Agreement ensures consensus despite arbitrary behavior (including irrationality) by
some participants. This approach has two attractive properties. First, consensus can
be achieved quickly and efficiently. Second, trust is completely decoupled from
resource ownership, enabling small non-profit organizations to help keep more
powerful entities (such as banks or CAs) honest. However, complicating matters is the
requirement that all parties must agree on the exact list of participants. Additionally,
measures must be in place to prevent attackers from joining multiple times and
exceeding the system's fault tolerance, known as Sybil attacks. BFT-CUP
accommodates unknown participants but still assumes the existence of a
Sybil-resistant centralized admission control mechanism. Generally, membership in
Byzantine Agreement systems is determined by a central authority or closed
negotiations.

Tendermint takes a different approach by basing membership on Proof of Stake.
However, this again ties trust to resource ownership.

SCP is the first Byzantine Agreement protocol that gives each participant
maximum freedom in choosing which combinations of other participants to trust.

1.5.5. Federated Byzantine Agreement (FBA) Model
The Federated Byzantine Agreement (FBA) model, like non-federated Byzantine

Agreement, addresses the problem of updating replicated states (e.g., transaction
ledgers or certificate trees). By agreeing on which updates to apply, nodes can avoid

contradictory, irreconcilable states. Each update is identified by a unique slot, from
which dependencies between updates can be inferred. For example, a slot might be a
sequentially numbered position in a log that is applied in order.

An FBA system runs a consensus protocol to ensure that nodes agree on the
contents of slots. When a node ν has safely applied updates in all slots that i depends
on, it can safely apply update x in slot i. Furthermore, it believes that all properly
functioning nodes will eventually agree on (Χ) for slot i. At this point, we say that (ν)
has externalized x for slot i. Externalized values may trigger irreversible reactions from
the outside world, so nodes cannot change their minds about them later.

A challenge for FBA is that malicious parties can join multiple times,
outnumbering honest nodes. Therefore, traditional majority-based quorum systems
do not work. Instead, FBA determines quorums in a decentralized manner, with each
node selecting what we call a quorum slice. The next subsection defines quorums
based on slices. The following subsections provide examples and discussions. Finally,
we define the key properties of safety and liveness that a consensus protocol should
aim to achieve.

1.5.5.1. Quorum Slices

In a consensus protocol, nodes exchange messages about slot declarations. We
assume that such declarations cannot be forged, which is guaranteed if nodes
are named by public keys and they digitally sign their messages. When a node
hears enough nodes assert a declaration, it assumes that no properly
functioning node will contradict the declaration. We refer to this "enough
nodes" as a quorum slice, or more concisely, just a slice. To allow progress in the
presence of node failures, a node can have multiple slices, any one of which is
sufficient to convince it to accept a declaration. Thus, at a high level, an FBA
system consists of a loose federation of nodes, each of which selects one or
more slices.

More precisely: A Federated Byzantine Agreement System (FBAS) is a pair <V,
Q>, consisting of a set of nodes V and a quorum function Q: ν → 22V ⧵ {∅ },
which assigns one or more quorum slices to each node. A node belongs to all of
its own quorum slices, i.e., ∀ν ∈ V, ∀q ∈ Q(ν), ν ∈ q. (Note: 2X denotes the
power set of X.)

Definition (Quorum): A set of nodes U ⊆ V in an FBAS <V, Q> is a quorum if
and only if U ≠ ∅ and U contains a slice for each member, i.e., ∀ν ∈ U, ∃q ∈

Q(ν) such that q ⊆ U.

A quorum is a set of nodes sufficient to reach agreement. A quorum slice is a
subset of a quorum that convinces a specific node to believe in the agreement.

Quorum slices may be smaller than quorums. Consider the four-node system in
Figure 2, where each node has one slice, and arrows point to the other members
of the slice. The slice {ν1, ν2, ν3} is sufficient for ν1 to believe a declaration.
However, the slices of ν2 and ν3 include ν4, meaning neither ν2 nor ν3 can assert a
declaration without ν4's agreement. Therefore, consensus cannot be reached
without ν4's participation, and the only quorum including ν1 is the set of all
nodes {ν1, ν2, ν3, ν4}.

Traditional non-federated Byzantine Agreement requires all nodes to accept the
same slices, i.e., ∀ν1, ν2, Q(ν1) = Q(ν2). Since every member accepts every slice,
traditional systems fail to distinguish between slices and quorums. The
drawback is that membership and quorums must be determined in advance in
some way, precluding open membership and decentralized control. Traditional
systems (e.g., PBFT) typically consist of 3ƒ + 1 nodes, where any 2ƒ + 1 nodes
form a quorum. Here, ƒ is the maximum number of Byzantine faulty nodes (i.e.,
nodes behaving arbitrarily) that the system can tolerate.

The key innovation of FBA is enabling each node ν to select its own independent
set of quorum slices Q(ν). Thus, system-wide quorums emerge from the
independent decisions of each node. Nodes can choose slices based on

arbitrary criteria such as reputation, financial arrangements, etc. In some cases,
consensus can still be achieved even if no single node has a complete

understanding of all nodes in the system.

Figure 2: Without ν4, ν1's Quorum Slice Would Not Be Considered a Quorum

Figure 3: Example of a Hierarchical Quorum Structure

Top Layer: Includes itself, with slices consisting of 3 slices: {ν1, ν2, ν3, ν4}
Middle Layer: Slices consist of itself + any two top-layer nodes
Leaf Layer: Slices consist of itself + any two middle-layer nodes

1.5.5.2. Examples and Discussion

Figure 3 illustrates an example of a hierarchical system where different nodes
have different sets of slices, a feature only achievable with FBA. The top layer
consists of ν1, ..., ν4, structured similarly to a PBFT system with ƒ = 1, meaning it
can tolerate one Byzantine fault as long as the other three nodes are reachable
and behave correctly. Nodes ν5, ..., ν8 form the middle layer, which does not
depend on each other but relies on the top layer. Only two top-layer nodes are
needed to form a slice for a middle-layer node. (The top layer assumes at most
one Byzantine fault, so unless the entire system fails, two top-layer nodes cannot
fail simultaneously.) Nodes ν9 and ν10 are at the leaf layer, where a slice consists
of any two middle-layer nodes. Note that ν9 and ν10 can choose
non-overlapping slices, such as {ν5, ν6} and {ν7, ν8}; nonetheless, both will
indirectly depend on the top layer.

In practice, the top layer might consist of 4 to 12 well-known and trusted
financial institutions. As the top layer grows, opinions about its membership
may not fully align, but most relevant parties will have significant overlap in their
understanding of the top layer. Additionally, multiple middle layers could be
envisioned, such as one per country or geographic region.

This tiered structure resembles inter-domain network routing. The Internet
today is held together by individual peering and transit relationships between
pairs of net- works. No central authority dictates or arbitrates these
arrangements. Yet these pair- wise relationships have sufficed to create a notion

of de facto tier one ISPs Though Internet reachability does suffer from firewalls,
transitive reachability is nearly complete—e.g., a firewall might block The New
York Times, but if it allows Google, and Google can reach The New York Times,
then The New York Times is transitively reachable. Transitive reachability may be
of limited utility for web sites, but it is crucial for consensus; the equivalent
example would be Google accepting statements only if The New York Times
does.

If we analogize quorum slices to network reachability and quorums to transitive
reachability, the internet's near-complete transitive reachability suggests that we
can similarly ensure global consensus through FBA. In many ways, solving
consensus is simpler than inter-domain routing. While transit consumes
resources and incurs costs, slice inclusion only requires checking digital
signatures. Thus, FBA nodes can err on the side of inclusion, constructing
conservative slices with higher interdependence and redundancy than typically
seen in peering and transit arrangements.

Another example impossible in centralized consensus is a cyclic dependency
structure, as shown in the figure. Such cycles are unlikely to arise intentionally,
but when individual nodes choose their own slices, the system as a whole may
end up with dependency cycles. More importantly, compared to traditional
Byzantine Agreement, FBA protocols must handle diverse group structures.

Figure 4: Example of a Cyclic Quorum Structure

1.5.5.3. Safety and Liveness

We categorize nodes into well-behaved and misbehaved nodes. Well-behaved
nodes select reasonable quorum slices and follow the protocol, including
eventually responding to all requests. Misbehaved nodes, on the other hand, do
not. Misbehaved nodes may experience Byzantine faults, meaning their behavior
is arbitrary. For example, a misbehaved node might be compromised, its owner
might maliciously modify its software, or it might crash.

The goal of Byzantine Agreement is to ensure that well-behaved nodes
externalize consistent values even in the presence of misbehaved nodes. This
goal encompasses two aspects. First, we want to prevent divergence among
nodes and ensure that the same value is externalized for the same slot. Second,
we want to ensure that nodes can effectively externalize values without getting
stuck in a deadlock where consensus cannot be reached. To this end, we
introduce the following two terms:

Definition (Safety): A set of nodes in an FBAS is considered safe if no two nodes
externalize different values for the same slot.

Definition (Liveness): A node in an FBAS is considered to have liveness if it can
externalize new values without the participation of any faulty (including
misbehaved) nodes.

Nodes that are both safe and live are called correct nodes. Misbehaved nodes
are faulty. All misbehaved nodes are faulty, but well-behaved nodes can also
become faulty if they wait indefinitely for messages from misbehaved nodes or,
worse, if their state is affected by incorrect messages from misbehaved nodes.

Figure 5 illustrates the types of node faults that can occur. On the left are
Byzantine faults, which are misbehaved nodes. On the right are two types of
well-behaved but faulty nodes. Nodes lacking liveness are called blocking nodes,
while nodes lacking safety are called divergent nodes. Attacks violating safety
are strictly more severe than those violating only liveness, so we consider
divergent nodes a subset of blocking nodes. Our definition of liveness is
relatively lenient, as it indicates that nodes can externalize new values, not that
they necessarily will.

Thus, it acknowledges a state of perpetual preemption, where consensus is
always possible, but the network continuously hinders the process by delaying
or reordering critical messages in undesirable ways. In purely asynchronous,
deterministic systems, perpetual preemption is unavoidable in the presence of
node faults. Fortunately, preemption is temporary. It does not imply node failure,
as the system can recover at any time. Protocols can mitigate this issue by
introducing randomness or making realistic assumptions about message delays.
Delay assumptions are more practical when one wishes to bound execution time
or avoid the need for a trusted dealer typically required by more efficient
randomized algorithms. Of course, only termination—not safety—should
depend on message timing.

Figure 5: Venn Diagram of Node Faults

1.5.5.4. Optimal Resilience

The safety and liveness of nodes depend on several factors: the quorum slices
they choose, which nodes are misbehaving, and the specific consensus protocol
and network behavior. As is common in asynchronous systems, we assume that
the network will eventually deliver messages between well-behaved nodes, but
messages may otherwise experience arbitrary delays or reordering.

This section explores the following question: Given a specific V,Q and a
particular subset of misbehaving nodes in V, what is the best safety and liveness
that any Federated Byzantine Agreement (FBA) protocol can guarantee,
regardless of the network's state? We first discuss quorum intersection,
emphasizing that the lack of this property will lead to the inability to guarantee
safety. Next, we introduce the concept of dispensable sets, which are sets of
faulty nodes that, despite their presence, still allow safety and liveness to be
preserved.

1.5.5.5. Quorum Intersection
A protocol can only ensure consistency if the quorum slices represented by the
function Q satisfy what we call the quorum intersection property.

Definition (Quorum Intersection): An FBAS has quorum intersection if and
only if any two quorums share at least one node—that is, for all quorums U1 and
U2,U1∩U2≠∅ .

Fig. 6. FBAS lacking quorum intersection

Fig. 7. Ill-behaved node ν7
can undermine quorum intersection.

Figure 6 illustrates a system lacking quorum intersection, where Q allows two
disjoint quorums {ν1,ν2,ν3} and {ν4,ν5,ν6}.These disjoint quorums can
independently agree on conflicting statements, thereby undermining the
consistency of the entire system. When multiple quorums exist, quorum
intersection fails if any two quorums are disjoint. For example, the set of all
nodes {ν1,…,ν6}intersects with the other two quorums, but the system still lacks
quorum intersection because the other two quorums do not intersect with each
other.

Without quorum intersection, no protocol can ensure safety, as this
configuration can be viewed as two independent FBAS systems that do not
exchange any messages. However, even with quorum intersection, safety may
still be compromised in the presence of misbehaving nodes. See Figure 6
(showing two disjoint quorums) and Figure 7 (showing two quorums
intersecting at a single nodeν7 ,where ν7 is misbehaving). If ν7 makes
inconsistent statements to the left and right quorums, the effect is equivalent to
having disjoint quorums.

In fact, since misbehaving nodes contribute nothing to safety, no protocol can
ensure safety if the well-behaved nodes themselves do not enjoy quorum
intersection. After all, in the worst-case scenario for safety, misbehaving nodes
can always make any possible (contradictory) statements to satisfy quorums.
Because misbehaving nodes are duplicitous, two quorums that overlap only at
misbehaving nodes can again operate like two separate FBAS systems. In short,
an FBAS <V,Q> can tolerate Byzantine faults by a set of nodes B⊆V iff V,Q
enjoys quorum intersection after removing the nodes in B from V and all slices in
Q. More formally:

Definition (Delete): If <V,Q> is an FBAS and B⊆V is a set of nodes, then
deleting B from <V,Q> denoted <V,Q>B, means computing the modified FBAS
<V∖ B,QB>, where QB(ν)={q\B∣q∈Q(ν)}.

Each node ν is responsible for ensuring that Q(ν) does not violate quorum
intersection. One way to achieve this is by choosing conservative slices, thereby
forming larger quorums. Of course, a malicious ν might intentionally select Q(ν)

to violate quorum intersection. But a malicious ν could also falsely report the
value of Q(ν) or ignore Q(ν) to make arbitrary assertions. In short, when ν is
misbehaving, the value of Q(ν) becomes meaningless. This is why the necessary
property for safety—quorum intersection among well-behaved nodes after
removing misbehaving nodes—is unaffected by the slices of misbehaving
nodes.

Suppose Figure 6 evolves from a three-node FBAS {ν1 ,ν2 ,ν3 } with quorum
intersection to a six-node FBAS without quorum intersection. When ν4 ,ν5 ,ν6 join,
they maliciously choose slices that violate quorum intersection, and no protocol
can ensure the safety of V. Fortunately, deleting the misbehaving nodes to
produce <V,Q>{ν4 ,ν5 ,ν6} restores quorum intersection, meaning that at least {ν1 ,
ν2 ,ν3} can enjoy safety. Note that deletion is conceptual, intended to describe
optimal safety. The protocol should ensure the safety of ν1 ,ν2 ,ν3 without
requiring them to know about the misbehavior of ν4 ,ν5 ,ν6.

1.5.5.5. Dispensable Sets

We capture the fault tolerance of node slice selection through the concept
of dispensable sets, or DSets. Informally, a DSet ensures the safety and liveness
of nodes outside the DSet, regardless of the behavior of nodes inside the DSet.
In other words, in an optimally resilient FBAS, if a single DSet contains every
misbehaving node, it must also contain every failed node, and conversely, all
nodes outside the DSet are correct.

For example, in a centralized PBFT system with 3ƒ+1 nodes and a quorum
size of 2ƒ+1, any set of ƒ or fewer nodes constitutes a DSet. Since PBFT can
actually tolerate ƒ Byzantine faults, its resilience is optimal.

In less common cases, {ν1} is a DSet because the failure of a single top-layer
node does not affect the rest of the system. {ν9} is also a DSet because no other
node depends on the correctness of ν9. {ν6,…,ν10} is a DSet because neither ν5
nor the top-layer nodes depend on any of these five nodes. However, {ν5,ν6} is
not a DSet because it is a slice for ν9 and ν10, and if fully malicious, it could
deceive ν9 and ν10 into making assertions that are inconsistent with each other
or with the rest of the system.

To prevent a misbehaving DSet from affecting the correctness of other
nodes, two properties must be satisfied. For safety, deleting the DSet must not
break quorum intersection. For liveness, the DSet must not prevent other nodes
from functioning properly. This leads to the following definition:

Definition (DSet): Let <V,Q> be an FBAS, and B⊆V be a set of nodes. We
call B a dispensable set or DSet if and only if:

1. (Quorum Intersection Despite B):<V,Q>B enjoys quorum intersection, and

2. (Quorum Availability Despite B): V∖ B is a quorum in <V,Q> or B=V.

Quorum availability despite B prevents nodes in B from refusing to respond
to requests and blocking the progress of other nodes. Quorum intersection
despite B prevents the opposite scenario—nodes in B making contradictory
assertions, allowing other nodes to externalize inconsistent values for the same
slot. Nodes must balance these two threats in their slice selection. All else being
equal, larger slices lead to stronger quorums and greater overlap, meaning that
fewer sets of faulty nodes B will break quorum intersection upon deletion. On
the other hand, larger slices are more likely to include faulty nodes, jeopardizing
quorum availability.

The smallest DSet containing all misbehaving nodes may also include
well-behaved nodes, reflecting the fact that a sufficiently large set of
misbehaving nodes can cause well-behaved nodes to fail. For example, the
smallest DSet containing ν5 and ν6 is {ν5,ν6,ν9,ν10}. The set of all nodes V is always
a DSet, as the FBAS <V,Q> vacuously enjoys quorum intersection despite V and,
in the special case, quorum availability despite V. The special case is motivated
by the fact that, given enough misbehaving nodes, V might be the smallest DSet
containing all misbehaving nodes, indicating that no protocol can guarantee a
better outcome than complete system failure in such a scenario.

The DSets in an FBAS are determined a priori by the quorum function Q.
Whether nodes are well-behaved or misbehaving depends on runtime behavior,
such as a machine being compromised. The DSets of interest are those that
contain all misbehaving nodes, as they help us distinguish nodes that should be
guaranteed correctness from those that cannot. To this end, we introduce the
following terms:

Definition (Intact): A node ν in an FBAS is intact if and only if there exists a
DSet B containing all misbehaving nodes, and ν∉ B.

Definition (Contaminated): A node ν in an FBAS is considered
contaminated if and only if it is not intact.

A contaminated node ν is surrounded by enough faulty nodes that, even
if ν itself is well-behaved, its progress is hindered or its state is corrupted. No
FBAS can guarantee the correctness of contaminated nodes. However, an
optimal FBAS can ensure that every intact node remains correct. The following
theorem facilitates analysis by showing that the set of contaminated nodes is
always a DSet in an FBAS with quorum intersection.

Figure 8: Key Properties of FBAS Nodes

Theorem 1: Let U be a quorum in the FBAS <V,Q>, let B⊆V be a set of
nodes, and let U′=U∖ B. If U′=∅ , then U′is a quorum in <V,Q>B.

Proof: Since U is a quorum, for every node ν∈U, there exists a q∈Q(ν)
such that q⊆U. Given that U′⊆U, for every ν∈U′ ,there also exists a q∈Q(ν)
such that q∖ B⊆U′. Rewriting this using the deletion notation, for every q⊆U′ ,
there exists a ⺕q∈QB(ν) such that q⊆U′. Since U′⊆V∖ B, this shows that U′is a
quorum in <V,Q>B.

Theorem 2: If B1 and B2 are DSets in the FBAS <V,Q> with quorum
intersection, then B=B1∩B2 is also a DSet.

Proof: Let U1=V∖ B1 and U2=V∖ B2. If U1=∅ , then B1=V and B=B2 (a DSet),
completing the proof. Similarly, if U2=∅ , then B=B1, also completing the proof.
Otherwise, note that by quorum availability, despite the existence of
Sets B1 and B2, U1 and U2 remain quorums in <V,Q>. By definition, the union of
two quorums is also a quorum. Therefore, V∖ B=U1∪U2 is a quorum, and
quorum availability is preserved despite B.

We now prove quorum intersection despite B. Let Ua and Ub be any two
quorums in <V,Q>B. Let U=U1∩U2=U2\B1. By quorum intersection
in <V,Q>, U=U1∩U2≠∅ . However, by Theorem 1,U=U2\B1, so U must be a
quorum in <V,Q>B1.

Now consider that Ua\B1 and Ua\B2 cannot both be empty;
otherwise, Ua\B=Ua would be empty. Therefore, either Ua\B1 is a quorum
in <V,Q>B1, or Ua\B2 is a quorum in <V,Q>B2, or both. In the first case, note that
if Ua\B1 is a quorum in <V,Q>B1, then by quorum intersection
in <V,Q>B1, (Ua\B1)∩U≠∅ . Since (Ua\B1)∩U=(Ua\B1)\B2, it follows that Ua\B2≠∅ ,
making Ua\B2 a quorum in <V,Q>B2. By a similar argument, Ub\B2 must also be a
quorum in <V,Q>B2. However, despite the existence of B2, quorum intersection
ensures that (Ua\B2)∩(Ub\B2)≠∅ , which is only possible if Ua∩Ub≠∅ .

Theorem 3: In an FBAS with quorum intersection, the set of compromised
nodes is a DSet.

Proof: Let Bmin be the intersection of all DSets containing all misbehaving
nodes. By the definition of integrity, a node ν is intact if and only if ν∉ Bmin.
Therefore, Bmin is precisely the set of compromised nodes. Since DSets are
closed under intersection, Bmin is also a DSet.

1.6. Core Advantages of SwiftBlock Coin

1.6.1. SCP Advantages

SwiftBlock Coin provides a transparent, secure, user-friendly, and efficient
transaction method through the SCP SwiftBlock Consensus Protocol, offering a
highly flexible decentralized ecosystem.

 Transparency: All transaction records are publicly verifiable, ensuring users can
access ledger information at any time.

 Efficiency: By optimizing block confirmation time and reducing network latency,
SCP achieves faster transaction processing.

 Security: A distributed node collaboration mechanism reduces the risk of single
points of failure and malicious attacks.

 User-Friendliness: Lower transaction costs enable individuals and businesses to
participate in the blockchain ecosystem at a lower cost.

 Decentralized Ecosystem: Allows users to freely participate in governance,
ensuring fairness and sustainability of the ecosystem.

1.6.2. SCP Mechanism Advantages

The (SCP) SwiftBlock Consensus Protocol is an improved consensus mechanism
that combines Byzantine Fault Tolerance (PBFT) and Proof of Stake (PoS), known as
Proof of Agreement (PoA), aiming to achieve higher security and transaction
efficiency.

 Strong Fault Tolerance: With BFT integration, the network remains stable even
if some nodes fail or act maliciously.

 Low Energy Consumption: Compared to Proof of Work (PoW), SCP uses
stake-accelerated verification, eliminating the need for extensive computational
resources and reducing network energy consumption.

 High Throughput: The optimized consensus algorithm reduces unnecessary
transaction confirmation steps, significantly increasing TPS (transactions per
second).

 Decentralization: Removes control by traditional centralized institutions,
ensuring network fairness and autonomy.

1.6.3. SwiftBlock Coin Ecosystem Advantages

Tokenizing traffic allows all traffic to become tradable, with SwiftBlock Coin
serving as the primary medium for free market transactions.

 SwiftFi Ecosystem: SwiftBlock Coin supports smart contract deployment,
enabling users to participate in decentralized lending, liquidity mining,
stablecoin trading, and other financial activities.

 NFT Marketplace: Leveraging SwiftBlock Coin's smart contract mechanism,
users can create, trade, and auction NFT assets, facilitating decentralized
transactions of digital art, in-game items, and other digital assets.

 Cross-Chain Interoperability: SwiftBlock Coin uses cross-chain bridge
technology to enable asset swaps with mainstream public chains (e.g., Ethereum,
BSC, Polkadot), enhancing liquidity.

1.6.4. Use Cases

SwiftBlock Coin is a revolutionary cryptocurrency focused on tokenizing traffic,
offering high flexibility and a wide range of applications.

 Traffic Tokenization: Users can easily purchase traffic using SwiftBlock Coin,
establishing it as the primary digital currency for traffic.

 Traditional Business Traffic Trading: Businesses can buy traffic using
SwiftBlock Coin, boosting transaction volumes without relying on third-party
intermediaries (e.g., ad agencies, payment channels), reducing costs, and
enabling global traffic and borderless payments.

 Financial Activities: Through the SwiftFi ecosystem, SwiftBlock Coin enables
decentralized financial activities like lending, smart contract investments, and
staking, lowering barriers and increasing efficiency.

 NFT Marketplace: Users can create, trade, and auction NFT assets using
SwiftBlock Coin's smart contract mechanism.

 Decentralized Traffic Exchange (DAE): A blockchain-based, intermediary-free
ad exchange market using SwiftBlock Coin as its core digital asset, enhancing
transparency, security, and liquidity while reducing ad costs.

1.6.5. Asset Security

The (SCP) SwiftBlock Consensus Protocol integrates multiple algorithms and
mechanisms to achieve higher security.

 Decentralized Consensus: Blockchain technology ensures digital asset security
through decentralized consensus and rapid finality.

 Flexible Trust Model: SCP's flexible trust mechanism allows nodes to choose
trusted partners and validators based on their needs, enhancing overall network
security.

 No Dependency on Super Nodes: Even with a few malicious nodes, consensus
security is maintained, ensuring network operation despite DDoS attacks, hacks,
or node failures.

 Low Latency: Transactions are confirmed within seconds without relying on
miners or computational power, avoiding security risks from delays.

 No Smart Contract Vulnerabilities: SwiftBlock Coin does not support
Turing-complete smart contracts, eliminating common attacks like reentrancy or
integer overflow.

1.6.6. SFB Reward Mechanism

SwiftBlock Coin builds a decentralized, transparent, and fair incentive ecosystem,
rewarding users for ad engagement, content creation, and traffic trading.

 Users: Earn SwiftBlock Coin by watching ads, interacting, and sharing.
 Advertisers: Receive data analysis rewards for ad bidding and placement.
 Traffic Providers: Earn SwiftBlock Coin for precise recommendations.
 Data Contributors: Profit from authorized data sharing.
 Community Rewards: Accelerated rewards for community support and growth.

1.6.7. SwiftBlock Coin Distribution

Category
Amount
(Coins)

Percentage Purpose

Internal Network
Phase

300,000,000 10%
Global distribution, halving rewards to
incentivize early users and growth.

Mainnet Phase 1,950,000,000 65%
Global distribution to drive growth and
ecosystem development.

Liquidity & Market
Operations

300,000,000 10% Support market circulation.

Research Team 150,000,000 5% Fund technical research.

Development
Team

150,000,000 5% Cover development costs.

Incentive
Programs

150,000,000 5%
Reward activities and community
development.

Total Supply 3,000,000,000 100%

1.6.7.1. Total Supply

SwiftBlock Coin has a fixed total supply of 3,000,000,000 coins, ensuring
scarcity and long-term value. The distribution is transparent and fair, supporting
sustainable growth. The burn mechanism reduces circulating supply,
maintaining value stability.

Internal Network Phase

During the internal network phase, SwiftBlock Coin adopts a globally
distributed release model to ensure fair and just token distribution. The goal of
this phase is to encourage user participation through early incentive
mechanisms, driving initial project growth and ecosystem development. By
gradually reducing rewards, the project aims to maintain the enthusiasm of early
users while preventing excessive inflation. These tokens can be used to reward
active users, support community governance, and provide necessary support for
the ecosystem. Additionally, a portion of the funds will be allocated to
marketing efforts to enhance the visibility of SwiftBlock Coin, attracting more
users to understand and participate in the project, thereby laying the foundation
for the subsequent mainnet development. To promote a healthy token
circulation, SwiftBlock Coin has established a burning mechanism where a
portion of tokens is burned during each node registration or on-chain
transaction, thereby reducing the total circulating supply and maintaining the
token's scarcity and value stability over the long term.

The consensus algorithm of SwiftBlock Coin relies on trustworthy nodes,
making it crucial to incentivize pioneers to form personal security circles. This
means that before the mainnet launch, the Swift Block Network will offer
substantial rewards to high-quality users who help maintain or contribute to
community development. Maintaining long-term network incentives is also
essential, so the network employs a unique mechanism where the release speed
is halved whenever the amount of coins a user receives from node releases
doubles their initial investment, and this process repeats until a cap is reached.

Mainnet Phase

The mainnet phase is a critical period for the development of the SwiftBlock
Coin ecosystem. The primary purpose of the tokens in this phase is to promote
the long-term growth of the entire network, enhance the diversity of
decentralized application scenarios, and encourage more users and developers
to participate through incentive mechanisms. SwiftBlock Coin ensures fair
distribution through a globally distributed release model while optimizing
incentive strategies to strengthen users' long-term holding intentions. As the
mainnet stabilizes, SwiftBlock Coin will be widely used in various decentralized
finance (SwiftFi) applications, payment systems, smart contract platforms, and

more. Additionally, these tokens will support the developer ecosystem by
rewarding contributors and funding innovative projects, further improving the
Swift Block Network ecosystem. SwiftBlock Coin also implements a "transaction
burn" mechanism, where a portion of tokens is burned with each on-chain
transfer to reduce circulating supply and ensure steady market value growth.

Liquidity and Market Operations

Liquidity is crucial for the stability and sustainable growth of SwiftBlock
Coin in the market. Therefore, a portion of the tokens is allocated to enhance
market liquidity, support trading platform operations, and conduct necessary
market promotion activities. Good liquidity helps reduce market volatility,
enabling investors and users to trade more smoothly while enhancing
SwiftBlock Coin's competitiveness in the global market. In terms of market
operations, these funds will be used for brand building, community promotion,
and establishing partnerships. For example, by collaborating with mainstream
exchanges, SwiftBlock Coin aims to increase trading depth and accessibility,
making it more widely adopted. Additionally, to further stabilize the market,
SwiftBlock Coin's burning mechanism will play a role in liquidity management,
where a portion of tokens is permanently burned during market transactions to
optimize supply and demand, enhancing the token's long-term value.

Research Team

The continuous development of the SwiftBlock Coin ecosystem relies on
strong technical research support. Therefore, a portion of the tokens is allocated
to fund the research team's long-term efforts in driving innovation in blockchain
core technologies. The research team's main tasks include optimizing blockchain
protocols, studying smart contract security, and developing new consensus
mechanisms. Through ongoing technical research, SwiftBlock Coin aims to
enhance network security, scalability, and efficiency to meet the demands of
future decentralized applications. Additionally, these funds will support
academic collaborations with universities and research institutions to explore
blockchain technology development and promote industry standards. To
optimize SwiftBlock Coin's economic model, the research team will refine the
burning mechanism to achieve the best balance between network stability and
incentives, ensuring the ecosystem's sustainable development.

Technical Team

The technical team is responsible for the development, maintenance, and
optimization of the SwiftBlock Coin network. A portion of the tokens is allocated
to pay developer salaries, infrastructure construction, and technical upgrades. As
an innovator in decentralized finance (SwiftFi) and blockchain technology,
SwiftBlock Coin must maintain high technical standards to ensure network

stability and security. The technical team's core tasks include network
architecture optimization, node management, smart contract upgrades, and
user experience improvements. Additionally, these funds will support the
development of the technical community, attracting more developers to join the
SwiftBlock Coin ecosystem and contribute to the project's growth. Notably,
SwiftBlock Coin employs a dynamic burning mechanism for node registration,
where a certain number of tokens are burned with each new node joining,
ensuring fair resource allocation and enhancing the token's long-term scarcity.

Incentive Mechanisms

A portion of the tokens is allocated for market promotion, community
activities, and incentive programs to increase user engagement and brand
influence. By organizing global marketing campaigns, such as online and offline
promotions, social media marketing, and community reward programs,
SwiftBlock Coin aims to attract more users and businesses to adopt its network.
Additionally, these funds will be used to host hackathons, developer
competitions, and other events to encourage developers to build innovative
applications on SwiftBlock Coin. The project will also introduce a "burn-to-earn"
mechanism in incentive activities, where a portion of marketing expenses will be
used to purchase and burn tokens during specific campaigns, controlling market
supply and enhancing the token's value growth potential.

Burning Mechanism

To ensure the long-term stability of the SwiftBlock Coin ecosystem and the
token's scarcity, SwiftBlock Coin implements an automatic burning mechanism
where a certain number of tokens are burned during each on-chain transaction
or node registration. The core goal of this mechanism is to control market
supply, reduce inflation, and enhance the market value of SwiftBlock Coin,
making it a truly sustainable cryptocurrency.

Transaction Burning Mechanism

Every on-chain transfer of SwiftBlock Coin burns a portion of tokens. This
means that whenever users transact, pay, exchange, or transfer tokens on the
network, the system automatically burns a portion of tokens, permanently
reducing the circulating supply. This mechanism not only stabilizes the token's
price but also incentivizes users to hold tokens long-term, reducing market sell
pressure and ensuring steady value growth.

Node Registration Burning Mechanism

To ensure fairness and decentralization in the SwiftBlock Coin network, a
burning mechanism is also triggered during each new node registration. New

nodes must pay a certain amount of SwiftBlock Coin as a registration fee, a
portion of which is burned. This mechanism prevents network resource abuse,
ensuring that only users genuinely committed to network security and stability
can participate in node operations, while further reducing circulating supply and
enhancing the token's long-term value.

Long-Term Deflationary Effect

SwiftBlock Coin's burning mechanism is a continuous, dynamic process. As
network users and transaction volumes grow, the number of tokens burned will
gradually increase, creating a long-term deflationary effect. This mechanism
ensures that SwiftBlock Coin avoids inflation issues over time, allowing its value
to grow steadily. Additionally, SwiftBlock Coin may introduce periodic buyback
and burn strategies to further optimize supply and demand, maintaining the
token's market value.

The burning mechanism is a crucial component of SwiftBlock Coin's
economic model. Through the dual mechanisms of "transaction burning" and
"node registration burning," the token supply is gradually reduced, enhancing
its long-term value and market stability. This mechanism not only strengthens
SwiftBlock Coin's appeal as a decentralized financial asset but also provides a
solid economic foundation for the ecosystem's sustainable development. As the
SwiftBlock Coin network expands, the burning mechanism will play an
increasingly important role in maintaining token scarcity and stability, making it
a truly efficient, secure, and decentralized blockchain ecosystem.

Total Supply

SwiftBlock Coin has a fixed total supply of 3,000,000,000 tokens to ensure
scarcity and long-term value. All token allocations follow transparent and fair
principles to support the project's sustainable development. Through a rigorous
economic model and scientific token release mechanisms, SwiftBlock Coin
avoids inflation and price volatility, ensuring stable market value growth. The
burning mechanism plays a vital role in the SwiftBlock Coin ecosystem, including
burning tokens during on-chain transactions, node registrations, and market
operations. This mechanism ensures the long-term stability of SwiftBlock Coin,
reduces circulating supply, maintains supply-demand balance, and enhances the
token's market value. SwiftBlock Coin is committed to building a secure, efficient,
and decentralized blockchain ecosystem, making it a trusted digital asset for
global users. In the future, SwiftBlock Coin will continue to optimize its
economic model and burning mechanisms to ensure sustainable value growth
and promote the widespread adoption of decentralized financial services
worldwide.

1.6.8. Future Development

SwiftBlock Coin aims to enhance network security, optimize user experience,
expand use cases, and improve market stability. It will upgrade blockchain
infrastructure, support complex DApps, and foster global partnerships. The burn
mechanism will continue to create deflationary pressure, ensuring long-term value
growth.

1.6.9. Conclusion

SwiftBlock Coin is a decentralized cryptocurrency built on blockchain technology,
offering an efficient, secure, and transparent digital financial ecosystem. Its SCP
SwiftBlock Consensus Protocol ensures high transaction efficiency and network
security. Through global distribution and innovative incentives, SwiftBlock Coin
promotes ecosystem growth. With a robust economic model and burn mechanism,
SwiftBlock Coin aims to become a leading global digital asset, providing secure,
efficient, and transparent financial services in a truly open and decentralized
blockchain ecosystem.

	Abstract
	1.Introduction
	1.1.Introduction to Traffic Tokenization
	1.2.Current Status and Future Expectations of the Traf
	1.3.Current Issues in the Traffic Monetization Market
	1.3.1.Market Dominance by Large Companies (Monopoly) – I
	1.3.2.Traffic Fraud and Fake Traffic
	1.3.3.Lack of Transparency & Unfair Settlements
	1.3.4.Privacy Issues & Misuse of User Data
	1.3.5.Undervaluation of Traffic

	1.4.What is Traffic Tokenization?
	1.5.SwiftBlock Coin Blockchain and Technical Architect
	1.5.1.Key Features of SCP
	1.5.2.SCP Consensus Process
	1.5.3.Main Components of SCP
	1.5.4.Characteristics of Different Consensus Mechanisms

	1.5.5.Federated Byzantine Agreement (FBA) Model
	1.5.5.1.Quorum Slices
	1.5.5.2.Examples and Discussion
	1.5.5.3.Safety and Liveness
	1.5.5.4.Optimal Resilience
	1.5.5.5. Quorum Intersection
	1.5.5.5.Dispensable Sets

	1.6.Core Advantages of SwiftBlock Coin
	1.6.1.SCP Advantages
	1.6.2.SCP Mechanism Advantages
	1.6.3.SwiftBlock Coin Ecosystem Advantages
	1.6.4.Use Cases
	1.6.5.Asset Security
	1.6.6.SFB Reward Mechanism
	1.6.7.SwiftBlock Coin Distribution
	1.6.7.1.Total Supply

	Internal Network Phase
	Mainnet Phase
	Liquidity and Market Operations
	Research Team
	Technical Team
	Incentive Mechanisms
	Burning Mechanism
	Transaction Burning Mechanism
	Node Registration Burning Mechanism
	Long-Term Deflationary Effect

	Total Supply
	1.6.8.Future Development
	1.6.9.Conclusion

